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Abstract 

2D short axis (SA) cine MR images are of crucial im- 
portance for the accurate assessment of cardiac anatomy 
and function. Since SA cine stacks are routinely acquired 
during multiple breath-holds, different breath-hold posi- 
tions can cause a misalignment of the heart between dif- 
ferent slices, with potential detrimental effects on a variety 
of clinically relevant measurements (e.g. volume or shape 
of the left ventricle). In this study, we propose a novel ap- 
proach to spatially align motion corrupted SA slices in MR 
image stacks using 3D probabilistic edge maps (PEMs) 
generated with structured decision forests. In our tech- 
nique, each 2D SA slice is associated with a 3D PEM out- 
lining the myocardial contours in the same slice as well 
as in the adjacent one. In-plane spatial misalignment be- 
tween adjacent slices is then corrected using a registration 
algorithm applied to the associated PEMs. This approach 
was tested against a conventional intensity-based registra- 
tion method on SA cine stacks acquired from 26 healthy 
subjects, for whom anatomical 3D cardiac images were 
also available as reference. End-diastolic left ventricular 
volumes are estimated using a 3D multi-atlas segmenta- 
tion technique and used to quantify alignment accuracy. 
The results show that the proposed technique successfully 
reduces the misalignment between slices and that the reg- 
istered stacks allow a more accurate volumetric estimation 
than both the original and the intensity-corrected ones. 

1. Introduction

Cardiovascular magnetic resonance (CMR) imagery can 
be used for accurate volumetric reconstruction of the beat- 
ing heart throughout the cardiac cycle, which is in turn 
necessary for a great number of clinically-relevant tasks 
such as volumetric estimations, wall motion analysis and 
inter-modality registration [1]. While fast SSFP sequences 
allow nowadays the direct acquisition of an anatomical 3D 
image (A3D) of the whole heart, they are usually limited 
by either relatively poor image quality or low temporal res- 
olution, making them unsuitable for accurate functional 

assessment. Consequently, the most common CMR se- 
quence currently used in the clinical practice is still the 
short axis (SA) SSFP cine, consisting of 10-14 parallel 
slices and 20-30 frames per cardiac cycle. SA cine stacks 
are generated during multiple breath-holds (i.e. 1-3 slices 
acquired per each breath-hold). Although the subjects are 
instructed to hold their breath at the same breath-hold po- 
sition, in practice the heart location can vary considerably. 
If the differences between the breath-hold positions are 
not accounted for with suitable inter-slice alignment pro- 
cedures, the acquired image stack will not correctly repre- 
sent the cardiac volume, introducing potential errors in all 
of the following analyses and visualizations. 

Several post-processing techniques for respiratory mo- 
tion correction for SA cine images have been presented 
in the last years. Virtually all of the proposed approaches 
consist in the 3D rigid registration between the acquired 
SA cine stack and other CMR images, such as A3D [1,2] or 
long axis (LA) [3, 4] images. Unfortunately, in the clinical 
practice these additional sequences are often unavailable. 
Therefore, inter-slice alignment can only be performed by 
conventional intensity-based approaches, which are on the 
other hand relatively inaccurate. The reason for this mainly 
lies in the considerable changes in the imaged features be- 
tween adjacent slices (due to the relatively high slice thick- 
ness of a typical SA cine stack), which hinders the appli- 
cation of registration approaches based on the comparison 
of information directly extracted from the two slices. 

In this paper, we propose a novel approach to in-plane 
spatial alignment of motion corrupted SA slices in MR im- 
age stacks using 3D probabilistic edge maps (PEMs) gen- 
erated with structured decision forests. PEMs are learning- 
based image representations outlining the contours of a 
specific object of interest (the myocardium, in this case). 
Through training, structured decision forests are able to 
associate to each 2D SA image for slice i a 3D PEM rep- 
resenting the contours at slices i and i+1.  The overlap 
between 3D PEMs generated from adjacent slices allows 
to correct the in-plane spatial misalignment using a block 
matching registration algorithm. The proposed approach 
was tested on a dataset of real SA cine stacks against a 
conventional intensity-based registration method. 
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2. Methods

2.1. Image Analysis 
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node to the right, and where H(S) can be defined as the 
Shannon entropy [5]. 

Structured decision forests extend the concept of clas- 
sification forests by using structured output spaces for Y 
in lieu of integer labels. For the particular task at hand, 
the samples x ∈ X represent image patches, while the la- 
bels y ∈ Y represent edge maps (see.  Fig.  1).  In order 
to train a structured decision tree, it is necessary to find 
a way to cluster structured labels at each split node into 
two subgroups depending on some similarity measure be- 
tween them.  This can be done in two steps [5].  First, Y 
is mapped to an intermediate space Z in which a distance 
between maps can be computed: more specifically, each 
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Figure 1. Simplified graph of the structured decision tree. 
In the proposed approach, each image patch extracted from 
slice i is a associated with a 3D edge map outlining the 
myocardial contours on slices i and i+1. 

Structured decision forests can be considered as exten- 
sions of more traditional classification forests [5]. In stan- 
dard classification forests, each decision tree classifies a 
sample x ∈ X by recursively branching left or right at 
each split node j (circles in Fig.  1) until a leaf node k 
(squares in Fig. 1) is reached. Each leaf node is associ- 
ated with a label y ∈ Y ⊂ Z or a distribution over the 
labels. Each split node j is associated with a binary split 
function h(x, θj ) ∈ {0, 1}, defined by the set of param- 
eters θj : if the outcome is 0 the node sends x to the left, 
otherwise to the right. In most cases, h is a decision stump, 
i.e. a single feature dimension n of x is compared with a 
threshold τ : θ = (n, τ ) and h(x, θ) = [x(n) < τ ]. A 
classification forest is an ensemble of T independent deci- 
sion trees: during testing, given a sample x, the predictions 
of the different trees are combined into a single output us- 
ing an ensemble model (e.g. based on majority voting). 
During training, the goal at each node is to find the set of 
parameters θj which maximize a previously defined infor- 
mation gain Ij . A standard definition for Ij is 

Si 

edge map y is associated with a binary vector z encoding 
whether every pair of pixels belong to a simply-connected 
region in the map or not.   Then, at each split node the 
edge maps y are mapped into a binary set of labels c ∈ C 
= {0, 1}: this is achieved performing PCA on the associ- 
ated z vectors followed by binary quantization applied to 
the principal component. This way, at each split node sim- 
ilar edge maps will be assigned to the same binary label c. 
Importantly, thanks to this discretization process the infor- 
mation gain defined in (1) can be directly applied. On a 
different note, the required input features are computed in 
a multi-scale fashion and consist of intensity values, gradi- 
ent magnitudes and HoG-like channels [5]. During testing, 
the edge maps predicted by each decision tree are averaged 
to provide the estimate for the input image patch x. Edge 
maps estimated for overlapping image patches are also av- 
eraged, yielding to the final probabilistic representation of 
the edge map (PEM) for the input image. 

In our technique, the described approach to edge repre- 
sentation was applied to associate to each 2D SA image 
for slice i a 3D PEM outlining the myocardial contours at 
slices i and i+1 (see Fig. 2). (The PEM at slice i-1 could 
be also predicted, but this would be at the expense of the 
prediction accuracy as the dimensionality of output space 
would be increased.) To build a model with motion-free 
data, the training dataset consisted of slices extracted from 
the A3D acquisitions (downsampled in the z direction to 
match the slice thickness of the 2D cine data later used for 
testing) together with myocardial contours (the edge maps 
used as labels). During testing, the structured random for- 
est predicts for each 2D SA image at slice i not only the 
myocardial contours location for the same slice but also 
for the following one (i+1) in a motion-free scenario. The 
overlap between 3D PEMs estimated for adjacent slices of 

Ij = H(Sj )  
' | j| 

H(Si ), (1) the stack allows to apply a block matching registration al- 
i∈{0,1} 

|Sj| 
where Sj , S0 and S1 are respectively the training set 

gorithm [6] to perform rigid in-plane spatial re-alignment. 
The rigid transformation estimated for the PEMs is then 
applied to the actual image at slice i+1. Each slice (from j j 

(comprising of samples x and associated labels y) arriv- 
ing at node j, leaving the node to the left and leaving the 

second to last) undergoes the same process, resulting in the 
complete re-alignment of the stack from base to apex. 
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Figure 2.  Pipeline of the proposed motion correction technique: 3D PEMs are estimated from each pair of adjacent SA 
slices and then aligned using a block matching algorithm. The estimated transformation is then applied to the actual slice. 

2.2. Image Acquisition 

CMR imaging was performed on 435 healthy subjects 
using a 1.5T Philips Achieva system (Best, Netherlands) 
equipped with a 32 element cardiac phased-array coil. The 
maximum gradient strength was 33 mT/m and the max- 
imum slew rate 160 mT/m/ms. 2D cine balanced steady- 
state free precession (b-SSFP) images were acquired in the 
left ventricular short axis (LVSA) plane from base to apex 
using the following parameters: repetition time/echo time 
3.0/1.5 ms, flip angle 60◦, acquired pixel size 2.0×2.2 mm, 
slice thickness 8 mm (2 mm gap); reconstructed voxel size 
1.2×1.2×8 mm; number of slices 10-12, cardiac phases 
30. A single breath-hold A3D LVSA b-SSFP sequence
was also acquired in the same orientation using the fol- 
lowing parameters: 3.0/1.5 ms, flip angle 50◦, pixel size 
2.0×2.0 mm, slice thickness 2 mm overlapping, recon- 
structed voxel size 1.2×1.2×2 mm, number of slices 50- 
60, cardiac phases 20, sensitivity encoding (SENSE) factor 
2.0 in both anterior-posterior and right-left directions. 

2.3. Performance Testing 

The structured decision forest model was trained on 410 
A3D images at end diastole - together with the associated 
myocardial contours - following the present implementa- 
tion details: image patch size 36×36 px, edge map labels 
size 12×12×2 px, number of trees T = 16. The proposed 
registration technique was tested on 25 2D cine stacks at 
the end diastolic phase. For comparison, we also tested 
a conventional intensity-based registration technique, in 
which the block matching algorithm [6] was directly ap- 
plied to the image intensity values between adjacent slices. 
The block matching algorithm was selected as competitor 
because in our experiments it consistently outperformed 
the more common methods based on normalized mutual 
information. A 3D multi-atlas segmentation technique [7] 
was applied to estimate end-diastolic left ventricular vol- 

Table 1.  Results for volume differences (mean ± std). 
∆V (ml) 

|EDVpre   EDVref | 10.34 ± 9.41 
|EDVI   EDVref | 10.76 ± 9.64 

|EDVP EMs  EDVref | 7.73 ± 6.55 

umes respectively from the A3D images (EDVref ), the 
2D SA image stacks before (EDVpre) and after slice- 
alignment using the proposed technique (EDVP EMs) and 
using the conventional intensity-based registration method 
(EDVI ). Since the  motion-free  A3D  images  and  2D 
SA image stacks were acquired from the same subjects, 
EDVref could be used as reference, and volume differ- 
ences between EDVref and EDVpre, EDVP EMs and 
EDVI , respectively, could be used as proxy to registration 
accuracy. 

3. Results

Fig. 3 shows examples of obtained registration results: 
qualitatively the proposed registration technique (PEMs- 
based) does a better job in slice realignment compared to 
the conventional (intensity-based) one. Statistics obtained 
from the computed volume differences are reported in Ta- 
ble 1: volume estimation performed on stacks registered 
using the proposed technique is more reliable in compari- 
son to the conventional technique (statistically significant 
improvement, p = 0.016 using t-test). 

4. Discussion and Conclusion

In this study we presented a registration technique to 
spatially align motion corrupted 2D SA MR image stacks 
using 3D PEMs. The proposed approach has been success- 
fully applied to 3D multi-modal registration between MR 
and either ultrasound or CT images [8]. Differently from 
that work, in which 3D PEMs were associated with 3D im- 
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Figure 3. Registration results obtained in two different subjects using the proposed technique (PEMs-based) and a conven- 
tional (intensity-based) approach. A3D images and acquired 2D SA stacks are also displayed for comparison. 

age patches, the structured decision forest presented in this 
paper associates 3D PEMs to 2D image patches extracted 
from a single image slice. The obtained results show that 
the proposed approach was able to perform slice realign- 
ment with higher accuracy than the conventional intensity- 
based technique (as far as volume estimation was con- 
cerned). Importantly, the proposed approach is currently 
limited to in-plane spatial alignment. Out-of-plane motion 
correction from a single image stack is in fact an ill-posed 
problem, and while the availability of other sequences (e.g. 
other SA or LA stacks) would allow to perform registration 
also in the z direction, these data are often unavailable. 

In conclusion, the proposed technique provides a higher 
registration accuracy for the spatial alignment of 2D SA 
images in comparison to a conventional intensity-based 
method, and therefore - when no additional sequences are 
available - should be adopted as a pre-processing step to 
volumetric estimation from cine CMR image stacks. 
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